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Multivariate monitoring schemes based on latent variable have been shown to be a powerful 

monitoring tool in many industrial batch processes. Two techniques for analysis latent varia-

ble, principal component analysis (PCA) and independent component analysis (ICA), were 

applied to monitoring vacuum pump system. T
2 

(or I
2
) and SPE charts are proposed as diag-

nostic result, and contribution plot of these statistical quantities are also considered for fault 

identification. In this work, three types of state variables such as pressure, current and vibra-

tion acceleration are measured to monitoring vacuum pump system. According to the diag-

nostic result and its analysis, it should be focused not only individual variable but also rela-

tionship between variables. Especially, relationship between supply current and vibration ac-

celeration well indicate the degradation of vacuum pump system. 

1. Introduction 

Demands on availability and reliability of vacuum pumps in modern semiconductor manufac-

turing process have been constantly increasing. It is the reason that the costs for failed wafer 

batches and lost production times are higher and higher as the size of the production wafer is larger 

and larger. In order to satisfy those demands, diagnostic algorithm is needed.  

Multivariate monitoring schemes based on latent variable have been shown to be a powerful 

monitoring tool in many industrial batch processes. Two techniques for analysis latent variable, 

principal component analysis (PCA) and independent component analysis (ICA), were applied to 

monitoring vacuum pump system. Multiway principal component analysis (MPCA), a multivariate 
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projection method, has been widely used to monitor batch and fed-batch processes. Methodology of 

PCA is briefly summarized in section II. In section III, another diagnostic algorithm (ICA) are in-

troduced. In section IV, the measurement setup of multiple state variables and their statistical fea-

tures are represented. In section V, diagnostic results (T
2
 and I

2
) are plotted. Finally, our conclusion 

are summarized in section VI.  

. 

2. Principal Component Analysis (PCA) 

2.1 Unfolding Method 

Consider batch process, where J process variables are measured at K instances of time. So, 

raw data are arranged into a three-dimensional (3-D) array X∈R
I×K×J

, where I is the number of 

batches, J is the number of variables and K is the number of sampling times in given batch.  

 For standard Principal Component analysis (PCA), three-dimensional array data are unfolded 

into two-dimensional matrix. The two primary unfolding methods preserve either the I direction (i.e. 

batches) or the J direction (i.e. variables) of the data. For variable-wise unfolding (i.e. X∈R
IK×J

), 

the nonlinear, time-varying trajectories of these data are preserved. These time-varying trajectories 

can provide the information for state of the vacuum pump system, but these time-varying trajecto-

ries can also provide more complications to the inexperienced user. 

 As variable-wise unfolded matrix provide one picture (chart) per one process while batch-

wise unfolded matrix provide one value per one process, the diagnostic results from batch-wise un-

folded matrix are familiar to the inexperienced user who monitor more than hundreds Vacuum 

pump systems. For this reason, batch-wise unfolding method was widely chosen for diagnostic re-

search.  

However, there is a critical shortcoming that all batch length (k) should be equal. In fact, the 

semiconductor manufacturing process are time varying, so k of each process are randomly deter-

mined. To overcome this problem, D. Sung
1
 equalized all batch lengths with dynamic time warping 

(DTW) algorithm. 

 

Figure 1. Unfolding methods.  
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2.2 Dynamic Time Warping (DTW) 

The Multi-way principal component analysis has been shown to be powerful monitoring tool in 

many industrial batch processes. However, it has the shortcoming that all batch lengths (K) should 

be equal. To overcome this shortcoming, D. Sung
1
 equalized all batch lengths with dynamic time 

warping (DTW) algorithm. 

 DTW synchronizes similar features in sets of signals using distance as a measure of similar-

ity of signals. DTW non-linearly warps the two signals in such a way that similar events are aligned. 

One of these two signals is taken as a reference. If their roles are interchanged, a different path and 

minimum distance will be obtained. The application of DTW to the monitoring batch process was 

proposed by A. Kassidas
2
.   

2.3 Multi-Way Principal Component Analysis (MPCA) 

The multi-way principal component analysis (MPCA) is used for analysis and monitoring of 

batch process data. The key idea of MPCA is to compress the normal batch data and extract the 

important information by projecting the data onto a low-dimensional space that summarizes both 

the variables and their time trajectories. So, MPCA can handle high dimensional and correlated data, 

by projecting the raw data onto a lower dimensional subspace which contains most of the variance 

of the original data. MPCA decomposed the normal operating condition (NOC) data matrix X∈R
I×

JK
 as the sum of the outer product of vectors ti and pi plus the residual matrix E∈R

I×JK
.  

EptETPX
a

i

T

ii

T  
1

'  
(

(1) 

 Where T is a score matrix (T∈R
I×M

) and ti is a score vector which contains information 

about relationship between batches, and P
T
 is a transposed loadings matrix (P

T∈R
M×JK

) and pi is a 

loading vector which contains information about relationship between instant variables. M is the 

number of principal component retained in the model. Note that score vectors are orthogonal and 

loading vectors are ortho-normal. 

 A major advantage of MPCA modelling is its ability to compare new batch data, Xnew ∈R
1×

JK
, to the NOC data in a systematic fashion. MPCA achieves this comparison by by projecting this 

new data set on the MPCA model generated from NOC data in order to determine the new batch 

scores, tnew∈R
1×M

: 

1)(  PPPXt T

newnew  
(

(2) 

 After determining tnew, Eq. 3 can be used to calculate the new batch residual, enew∈R
1×JK

 

T
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(
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 The statistics used for a MPCA are Hotelling’s T
2
 and squared prediction error (SPE).  Hotel-

ling’s T
2
 can be used to measure the variation of systematic part of MPCA model. T

2
 is the sum of 

the normalized squared scores, that is 

T
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Where SD∈R
M×M

 is the covariance matrix of the model score matrix, T, and I is the number 

of NOC batches.  
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 Singular values can be monitored by using SPE, also called Q statistics. The SPE is define as 

the sum of squares of each row of E; for example, for the i-th batch are calculated as 

new

T

newi eeSPE 
 

(

(6) 

3. Independent Component Analysis (ICA) 

3.1 Basic concept of ICA 

Independent component analysis (ICA) is originally developed for signal processing applica-

tions including speech signal processing, communications and so forth. ICA can be taken as an ex-

tension of PCA, however, the objectives for both algorithms are quite different. PCA extracts com-

ponents by only considering variance–covariance matrix, and it aims at making the latent variables 

to be orthogonally uncorrelated. ICA has no orthogonality constraint which not only allows to de-

correlate variables, but also to consider the higher order statistics for making latent variables to be 

independent. Therefore, ICA can be used to deal with a non-Gaussian process which is more practi-

cal in a real-world manufacturing environment, especially for the process industry. 

 ICA is a statistical technique for revealing hidden factors that underlie set of multiple vari-

ables. The multiple data variables are assumed to be linear mixtures of some unknown latent vari-

ables, and the mixing system is also unknown. The latent variables, they are called the Independent 

Component(IC) of the observed data, are assumed non-Gaussian and mutually independent.  

 In the ICA algorithm, it is assumed that J measured variables x1,x2,···,xj can be expressed as 

linear combinations of m unknown independent components s1,s2, ···,sm the independent compo-

nents and the measured variables have means of zero. The relationship between them is given by 

  

EsaEASX
m

l

ll  
1  

(7) 

Where X is the data matrix, A is the mixing matrix, S is the independent component matrix, E 

is residual matrix. The basic problem of ICA is to estimate the original components S or to estimate 

A from X without any knowledge of S or A. Therefore, the objective of ICA is to calculate a sepa-

rating (de-mixing) matrix W so that the components of the reconstructed data matrix S, given as  

WXS   (8) 

Become as independent of each other as possible.  This formulation is not really different 

from the previous one, since after estimating A, its inverse gives W. Compared to the PCA, the S 

and W matrix in Eq. (8) may be considered as a loading matrix and a score matrix, i.e. S can be 

treated as a loading matrix T, while W can be regarded as loading matrix P.. 

3.2 Calculate de-mixing matrix 

The initial step in ICA is centering, if mean values of the measured variable data x1,x2,···,xj 

are not zero, by followings 

}{ jjj xExx   (9) 

 As Eq. (9), obtain the centered xj, by subtracting the average value E{xj} from measured 

variables xj. After centering, the next step is whitening which eliminates all the cross-correlation 

between variables. The whitened matrix, Z, have zero correlation and unit variance (i.e. E{zz
T
}=I).  

 Consider a covariance matrix of X, Rx, the eigen-decomposition of Rx is given by 
T

X UUR   (10) 

 The whitening transformation is expressed as 

BSQASQXZ   (11) 

 Where whitening matrix Q is Λ
- ½U

T
 and B is orthogonal matrix. According to Eq. 11, the 

ICA problem can be reduced from finding an arbitrary full-rank matrix A to finding an orthogonal 
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matrix B. To calculate B, it is initialized and the updated so that the projection, S=B
T
Z, has to 

maximize non-Gaussianity. Hyvärinen and Oja
3
 showed that using the central limit theorem. There 

are two common measures of non-Gaussianity: kurtosis and negentropy. Kurtosis is sensitive to 

outlier and negentropy is based on the information-theoretic quantity of entropy. Based on the 

negentropy, Hyvärinen
4
 introduced a fast fixed-point algorithm for ICA. This algorithm calculates 

on column of the matrix B by maximizing the negentropy under the constraint of ||bl||=1, which bl is 

the l-th column of B. After finding A, the de-mixing matrix W can be obtain from W=B
T
Q. 

QB=W T  (12) 

 The selection of a small number of dominant components has at least two advantages, ‘robust 

performance’ and ‘reduction of analysis complexity’. In PCA, the order of the score vectors is de-

termined by their variance. Therefore, data dimension can be reduced by selecting dominant score 

vectors. However, unlike PCA, there is no standard criterion for ordering of ICs, which complicates 

the ordering procedure. A number of methods have been suggested to determine the component 

order 
5-7

. In this paper, we used the simple approach of sorting the rows fo the de-mixing matrix, W, 

on th basis of their Euclidean norm (L2): argi Max||wi||2  

 After the ordering of the ICs, it is necessary to select the optimal number of ICs to be used 

for monitoring. The data dimension can be reduced by selecting the first few rows of the ordered W 

based upon the assumption that the rows with the largest Euclidean norm (L2) have greatest effect 

on the variation of S. This approach is based on the idea that the dominant variation in a process and 

be monitored by considering the cumulative sums of only the first few dominant ICs
7
. 

3.3 ICA based fault detection method  

In MICA, three types of statistics are calculated from the process model in normal operation: 

the I
2
 statistics for systematic part of the process variation, Ie

2
 statistics based on excluded ICs and 

the SPE for the residual part of the process variation.  

 The I
2
 statistic is the sum of the squared independent scores and is defined as follows: 

 new

T

newi ssI 2

 
(13) 

 Also, we can calculate the I
2
 metric of the excluded independent components, that is, Ie

2
 met-

ric. The Ie
2
 metric has the further advantage that it can compensate for the error that results when an 

incorrect number of ICs is selected for the dominant part. The use of I
2
 and Ie

2
 statistics allows the 

entire space spanned by the original variables to be monitored through a new basis. The Ie
2
 statistic 

is defined as follows: 

newe

T

neweie ssI )( 2

 
(14) 

 The SPE statistic for the nonsystematic part of the common cause variation of new data can 

be visualized in a chart with confidence limits. The SPE statistic is defined as the sum of the 

squares of e, the columns of E in Eq.7: 

i

T

ii eeSPE 
 

(15) 

4. Semiconductor manufacturing process  

4.1 Measurement setup 

Most of dry vacuum pump systems for semiconductor manufacturing processes are composed 

of booster pump parts and dry pump parts. In this study, Inlet pressure, exhaust pressure and the 

supply currents, acceleration for vibration are chosen as the state variables. Inlet pressure and ex-

haust pressure represent the condition of chemical reacting process and performance of vacuum 

pump. There are correlations between the supply current to dynamic behaviour of load torque of 

pump motor. Vibration accelerometers were proposed to monitor the dynamic running conditions of 

vacuum pump. The accelerometer signals measured from the body of the dry vacuum pump are 

vector-summed and converted into a scalar value. The signal sampling rate of 40.96 KHz was cho-
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sen, which is sufficient to cover the 10 kHz bandwidth of vibration signals. Collected digital signals 

are used to calculate in every 0.1 second the mean values of two pressure signals and the root mean 

squared (RMS) values of two supply current signals and two vibration signals. These six variables, 

which are installed and connected to the individual sensors, are listed in table 1. 

Table 1. Measurement variables and selected sensors. 

Measured State Variables 
Selected Sensors 

 and Instruments 

pressure  

(mbar) 

Inlet vacuum pressure 
Pfeiffr Vacuum, CMR 362 (110 mbar)  

Gauge controller 256A 

Exhaust pressure 
Trafag, 8489 model 

(1.6 bar, absolute, 0.2% F.S.) 

Supply Current  

(A) 

Booster pump 
Taewa Trans.,  

TZ84V/L (100A, 0.2%) 

Dry pump 
Taewa Trans.,  

TZ84V/L (100A, 0.2%) 

Vibration Accelera-

tion (m/s
2
) 

Booster pump 
Endevco, model 7210-100 (Uni-axis,100g, 1%), 

 Model 136 Amplifier 

Dry pump 
Endevco, model 2230EM (3 axes, 500g, 1%) ,  

Model 136 Amplifier 

 

4.2 Characteristics of variables 

As mentioned, PCA well works for Gaussian distributed variables and ICA is suitable for 

non-Gaussian distributed data. As seen, Fig. 2 shows typical batch trajectory profiles of semicon-

ductor manufacturing processes. In semiconductor manufacturing processes, Gas-loaded state (G1~4) 

and idle state (I1~4) are repeated. At gas-loaded state, vacuum pump exhausted the purge gas from 

dome. We concentrated Gas-loaded state data, because vacuum pump actually works during these 

Gas-loaded state. During Gas-loaded state, three non-Gaussian distributed data (i.e. Inlet pressure, 

booster pump supply current and dry pump supply current) and three Gaussian distributed data (i.e. 

exhaust pressure and booster pump acceleration and dry pump acceleration) are measured. That is 

why we used PCA and ICA together in this paper.  

 For this research, measurements of vacuum pump stored for 20days (201 batch) until pump 

failed. There are variable failure reasons and selected data set is most frequently occurred case, 

‘pumping speed decreased’. 

 

        Figure 2. Typical trajectory of inlet pressure. 
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5. Result and discussion 

5.1 On-line monitoring and fault diagnosis 

Two latent variables analysis techniques for on-line monitoring was developed from the his-

torical data set of the selected 50 batches measured first five days to create a rather broad scope 

normal operating condition (NOC) batches. Four principal components were retained by the cross-

validation method, approximately 95% of the total variability. Meanwhile, three independent com-

ponents reduced by Euclidean norm (L2). The newly measured data set that consisted of the remain-

ing 150 batches were projected onto the reduced MPCA model space or ICA model space.  

Each batch is converted to a value, T
2
 with PCA or I

2 
with

 
ICA. These diagnostic results well 

represented at Fig. 3 and Fig.4. Diagnostic algorithm with MPCA detected fault at 187
th

 batch, and 

ICA 186
th

 batch. 

5.2 Latent variables and contribution 

If a fault was detected, the individual plot of latent variables (i.e. PCs and ICs) can be checked 

to get a better understanding of fault sources. As T
2
 and I

2
 are sum of normalized PC and IC, large 

score values result in large values of T
2
 and I

2
 values which are detected and the corresponding ob-

ject isolated. In PCA, the variable contributions to the T
2
 value of an object k are computed using 

the following equation
8
: 

TT PPkxPktoncontributi 11 )()(  
 

(16) 

Where Λ is a diagonal matrix with has diagonal elements equation to eigenvalues.  

In ICA, the variable contribution of x(k) for I
2
(k) can be obtained using the following equa-

tion
9
. 

)(ˆ
)(ˆ

)(ˆ
)(

1

1

ks
ksBQ

ksBQ
kX dnew

dnewd

dnewd

cd 




 (16) 

 

 

Figure 3. T
2
 chart                                                    Figure 4. I

2
 chart                               

 

6. Conclusions 

 We proposed two refinements to diagnose of vacuum pump, one is that two algorithms with 

latent variables detected a fault of vacuum pump; the other is that relationship between variables 

should be focused to analysis failure reason. Collected raw data converted to unfolded matrix with 

DTW algorithm, dimensional reduced by PCA or ICA, and calculated T
2
 and I

2
 statistics. The trend 

of these statistics well represented the performance state of vacuum pump, and detected fault point 
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precisely. The introduction of variable contribution to the statistics means that the relationship of 

multivariable should be looked after. Especially, relation between supply current and vibration ac-

celeration applies with special force in the case of vacuum pump diagnostics.  
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