Aerodynamic Noise Analysis of Large Horizontal Axis Wind Turbines Considering Fluid-Structure Interaction

Ho Geon Kim¹, Seung Hoon Lee¹, Eun Kuk Son¹, Seung Min Lee¹, Soo Gab Lee²*

¹Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea
²Institute of Advanced Aerospace Technology, Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, Korea

Received November 17, 2010; accepted XX, XX; published online XX, XX

Aerodynamic Noise is one of the most serious barriers in wind energy development. To develop noise reduction technologies and assess wind turbine noise, more precise noise prediction is needed. Especially, an important factor that should be considered for calculating noise accurately is the blade flexibility. The numerical tool, WINFAS, includes fluid-structure interaction, consists of three parts. The Unsteady Vortex Lattice Method is used for aerodynamic part and the Nonlinear Composite Beam Theory is applied for structural part. In third part of WINFAS, to analyze aerodynamic noise, semi-empirical formula of airfoil self noise and Lowson’s formula of turbulence ingestion noise are used. In this study, using this numerical method, the noise source position and strength change due to blade flexibility was examined. This research shows that elastic blades decrease broadband noise because pitching motion reduces angle of attack.

1 Introduction

Wind energy industry has been rapidly increased around the world as a practical solution for Low-Carbon Green Growth. However, social and environmental problems such as landscape damage, shadow flicker, noise, electromagnetic interference et al. have hindered for wind energy development. Among them, the issue on noise has become the biggest problem [1].

Two kinds of approaches are mainly needed to resolve wind turbine noise. One is that reduce the generated noise [2] and the other is that determined the extent of noise impact and then make a post-compensation or reduce the pre-damage during the wind farm construction. To do this, we need a proper noise analysis and propagation method. In a recent, the size of wind turbine becomes larger. For example, in 1960s, the diameter of wind turbine is only 40m; however, nowadays, it is over 120m [3-4]. Since these large wind turbines are more flexible, aerelastic deformation has to be considered for wind turbine system analysis and its design [5]. Besides, process of the noise analysis is until now assumed that the blade is rigid but the necessity considering the blade flexibility for aerodynamic noise analysis is arisen. The purpose of this study is investigation into the effects of the deformation of large wind turbine blade to the aerodynamic noise.

To view the effects of the blade flexibility on the aerodynamic noise, three kinds of methods are used. In the part of the aerodynamic analysis, the Nonlinear Vortex Correction Method [6], based on the Unsteady Vortex Lattice Method, designed for the calculation beyond the stall region is used and the Nonlinear Composite Beam Theory developed by D. H. Hodges [7-8] is used for the structure analysis. Finally, Turbulent Ingestion (TI) noise [9] and Turbulent Boundary Layer Trailing Edge [10] noise analysis are performed with information on the blade deformation and the flow filed.

*Corresponding author (email: solee@smu.ac.kr)
2 Numerical Method

Figure 1 shows schematic diagram of wind turbine blade aerodynamic noise analysis considering Fluid-Structure Interaction (FSI). Numerical method is consists of three parts: aerodynamic part, structural part, and aeroacoustic part. The Nonlinear Vortex Correction Method (NVCM) that is based on the Unsteady Vortex Lattice Method (UVLM) is used to calculate stall region for Aerodynamic part. In structural dynamic part, the Nonlinear Composite Beam Theory (NCBT) that D.H. Hodges derived is used. In order to improve convergence of aerodynamic and structural solution, structural code is converged in vacuum first, and loosely coupled analysis is computed with slow starting during 1 revolution. After pre-convergence procedure, full load condition is applied to calculate FSI. In this research, total 10 revolutions are performed with full load.

After FSI calculation, aerodynamic noise analysis is performed using blade deformation, effective angle of attack, and onset velocity on each blade section. Because main sources of wind turbine aerodynamic noise are Turbulent Ingestion (TI) and Turbulent Boundary Layer Trailing Edge (TBLTE) noise, we calculated two noise sources in this study.

The NVCM is summarized as follows:

- **Initial stage**: If \(F = dL_{UVLM} - dL_{table \ look-up} \neq 0 \)
- Then: \(\Gamma_{initial} \pm \Delta \Gamma \rightarrow \Gamma_{modified} \)
- **Final stage**: If \(F \rightarrow 0 \), then use \(\Gamma_{modified} \)

where \(dL_{UVLM} \) and \(dL_{table \ look-up} \) indicate sectional lift from the UVLM and the table look-up procedure, respectively; \(F \) is the difference between these two values; and \(\Gamma \) indicates the bound vortex strength of the blade spanwise section. Using the unsteady Bernoulli equation and the pressure difference, \(dL_{UVLM} \) is computed from the UVLM.

In this research, to consider 3-dimensional stall delay AirfoilPrep [13] was used. The local effective angle of attack and the Reynolds number are calculated using the UVLM. Then, \(dL_{table \ look-up} \), sectional drag and sectional pitching moment were obtained by interpolating from the airfoil data table according to the calculated effective angle of attack and the Reynolds number.

If \(F \) is not zero, \(F \) is modified by matching process between \(dL_{UVLM} \) and \(dL_{table \ look-up} \) using addition or subtraction of \(\Delta \Gamma \) which is equal value in one spanwise section.

However, in this process, a problem for determination of the bound vortex strength by matching arises from nonlinearity between the bound vortex strength and the angle of attack for not only independent strips but also neighboring blade strips. For this reason, this process has to be represented by a nonlinear system of equations:

\[
F_i(\bar{x}) = (dL_{UVLM})_i - (dL_{table \ look-up})_i, \quad i = 1, 2, \ldots, n
\]

where \(x_1 = \Delta \Gamma_1 \), \(x_n = \Delta \Gamma_n \), and \(\bar{x} = (x_1, x_2, \ldots, x_n) \). Subscript \(n \) is the total number of blade spanwise sections. The vector form of eq. (1) is given by

\[
\bar{F}(\bar{x}) = 0 \quad (2).
\]

Eq. (2) can be solved by applying by a sophisticated Newton-Raphson iterative method with a rapid local convergence algorithm and a globally convergent strategy [14].

The wake shed from the trailing edge is described using a vortex ring to predict wake convection. At each time step, the free wake moves with the total velocity.
2.2 Nonlinear Composite Beam Theory

Rotating beam coordinate systems are shown in figure 2. Coordinate ‘a’ is a global frame, with its axes labeled \(a_1, a_2,\) and \(a_3\) is rotating with the rotor. Undeformed blade coordinate is ‘b’ frame. Blade’s deformed frame is named ‘B’ with its axes are \(B_1, B_2,\) and \(B_3.\)

![Figure 2 The Coordinates system for dynamics of moving beam. 'a' frame is global coordinates rotating with rotor. 'b' frame is undeformed blade coordinate. 'B' is blade's deformed frame.](image)

An arbitrary vector \(U\) that is in ‘a’ frame can be expressed by its components in ‘B’ or ‘b’ frame using the transformation matrices such as below

\[
U_b = C_{ba} U_a, \quad U_b = C_{ba} U_a (3)
\]

where \(C_{ba}\) is the transformation matrix from ‘a’ to ‘B’, and \(C_{ba}\) is that from ‘a’ to ‘b’. Mixed form of the variational equation is used for the blade structure modeling. Hamilton’s principle is used for the formulation derivation and it is written as

\[
\int_{t_1}^{t_2} \left[\delta (K - U) + \frac{\partial W}{\partial \dot{a}} \right] dx dt = \delta \Delta (4)
\]

where \(t_1\) and \(t_2\) are arbitrary fixed times, \(I\) means length of beam. \(K\) and \(U\) are the kinetic and potential energy per unit length. \(\Delta\) is the virtual action at the ends of beam and time interval. \(\frac{\partial W}{\partial \dot{a}}\) is the virtual work of applied loads per unit length. Partial derivatives of \(U\) and \(K\) with respect to \(\gamma, \kappa, V_b\) and \(\Omega_b\) are the internal force and moment vectors \(F_b\) and \(M_b,\) and linear and angular momentum vectors \(P_b\) and \(H_b\) are defined as

\[
F_b = \left(\frac{\partial U}{\partial \gamma} \right)^T, M_b = \left(\frac{\partial U}{\partial \kappa} \right)^T (5)
\]

\[
P_b = \left(\frac{\partial K}{\partial V_b} \right)^T, H_b = \left(\frac{\partial K}{\partial \Omega_b} \right)^T
\]

where \(\gamma\) and \(\kappa\) are force and momentum strain and \(V_b\) and \(\Omega_b\) are linear and angular velocity. The first component of \(F_b\) is axial force \((\gamma_1\) axis, outward direction from root to tip) and the second and third term are shear force. As same convention of \(F_b,\) torsional moment is the first term of \(M_b\) and the second and third term of \(M_b\) mean bending moment (more details in ref. [8]). For mixed variational form, Lagrange’s multipliers are used and the complete variational formulation can be derived in ‘a’ frame based on geometrically exact equation.

\[
\int_{t_1}^{t_2} \delta \Pi_a dt = 0
\]

\[
\delta \Pi_a = \int_{t_1}^{t_2} \left[\delta \left(C^{ab} C^{ba} F_b + \delta a^T \left(C^{ab} P_b \right) + \delta a^T C^{ab} C^{ba} P_b \right) + \delta \psi \Delta \delta + \frac{\partial \psi}{\partial \theta} \Delta \right] (6)
\]

where \(\delta a, m\) are aerodynamic force and moment vector. \(\delta a^T f_a - \frac{\partial \psi}{\partial \theta} \) is the virtual work of aerodynamic load per unit length. \(\hat{F}_a, \hat{M}_a, \hat{u}_a\) and \(\hat{\theta}_a\) are boundary conditions. For wind turbine case, \(\hat{F}_a, \hat{M}_a, \hat{u}_a\) of blade tip are zero and \(\hat{\theta}_a\) of blade root are zero (see more details in ref. [8]).

For finite element discretization, the blade is divided into \(N\) elements, and eq. (6) can be rewritten as

\[
\int_{t_1}^{t_2} \sum_{i=1}^{N} \delta \Pi_i dt = 0 (7)
\]

where \(i\) is an \(i\)-th element with length \(dl\) and \(\delta \Pi_i\) is the corresponding spatial integration over the \(i\)-th of eq. (6). Because eq. (7) derived by mixed variational formulation,
simple shape functions can be used. Substitution and interpolation such as eq. (8) are accomplished on each element.

\[
x = x_i + \xi \Delta x, \quad \xi d = \Delta x \frac{d}{d\xi}
\]

\[
\delta u_i = \delta u_i \left(1 - \xi\right) + \delta u_i \xi, \quad \delta u_i = u_i - \delta u_i
\]

\[
\delta \phi_i = \delta \phi_i \left(1 - \xi\right) + \delta \phi_i \xi, \quad \delta \phi_z \left(1 - \xi\right) + \delta \phi_z \xi
\]

\[
\delta \phi_z = \delta \phi_z \left(1 - \xi\right) + \delta \phi_z \xi, \quad \delta \phi_z = \delta \phi_z
\]

\[
\delta \phi_i = \delta \phi_i, \quad \delta \phi_i = \delta \phi_i
\]

\[
F_S(X, \dot{X}) - F_e = 0 \quad (9)
\]

where \(F_S \) is the structural operator, \(F_e \) is the aerodynamic operator, and \(X \) is the unknown vector. A second-order backward Euler method is applied for time integration, and one can get a nonlinear algebraic equation at \(n \)-th time step.

\[
F_S(X^n) - F_e = 0 \quad (10)
\]

Eq. (10) can be solved using Newton’s method. The solutions of eq. (10) are displacement, stress and strain at each time step.

2.3 Aerodynamic Noise Model

Effective angles of attack, onset velocities and deformations which are calculated using FSI are used for analysis of wind turbine aerodynamic noise. In this study, Turbulent Ingestion noise(TI) [9] is predicted using Lowson’s model and Semi-Empirical formula [10] is applied for Turbulent Boundary Layer Trailing Edge noise(TBL-TE) because TI and TBL-TE noise are main sources of wind turbine aerodynamic noise. Boundary layer displacement thickness data that is needed to calculate TBL-TE noise is tabulated and categorized according to Reynolds Number, angle of attack, onset velocity and r/R using Xfoil [15].

TI noise is generated by the interaction of atmospheric turbulence with rotor blade because of pressure fluctuation. High and low frequency TI noise can be analyzed by eq. (11) that Lowson [9] adopted the model of Amiet [16]

\[
\text{SPL}^H_{\text{TIN}} = 10\log_{10}\left[\rho^2 c_o^2 L_0^2 M^2 T^2 (1 + k^2)^{3/2} + 58.4\right]
\]

\[
\text{SPL}^L_{\text{TIN}} = \text{SPL}^H_{\text{TIN}} + 10\log_{10}\left[\frac{K_{\text{L}}}{1 + K_{\text{L}}^2}\right]
\]

\[
k = \pi c / V, \quad \beta^2 = 1 - M^2, \quad K_{\text{L}} = 10S^2 M^2 k^2 / \beta^2
\]

\[
S_T = \left(\frac{2\pi k}{\beta^2} + \frac{1}{1 + 2.4k / \beta^2}\right)
\]

where \(K_{\text{L}} \) is the low frequency correction factor, \(\rho \) is density of air, \(M \) is Mach number, \(V \) is onset velocity, \(c_o \) is speed of sound, \(I \) indicates the turbulence intensity and \(L \) indicates the length scale of turbulence.

A boundary layer develops on the blade surface. Transition from laminar to turbulent flow occurs and induces a fluctuating pressure field. When turbulent eddies meet a sharp edge like training edge, they become more efficient. TBL-TE noise can be predicted by below equations (details in ref. [10]).

\[
\text{SPL}_{\text{TBL-TE}} = 10\log_{10}\left[10^{\text{SPL}_{\text{TI}}/10} + 10^{\text{SPL}_{\text{TI}}/10} + 10^{\text{SPL}_{\text{TI}}/10}\right]
\]

\[
\text{SPL}_{w} = 10\log_{10}\left[\frac{\delta M^2 D_{\text{Air}}}{r^2} + G \left(\frac{S_t}{S_{\text{Air}}}\right) + W + 3\right]
\]

\[
\text{SPL}_{w} = 10\log_{10}\left[\frac{\delta M^2 D_{\text{Air}}}{r^2} + G \left(\frac{S_t}{S_{\text{Air}}}\right) + W - 3 + \Delta W\right]
\]

\[
\text{SPL}_{n} = 10\log_{10}\left[\frac{\delta M^2 D_{\text{Air}}}{r^2} + G \left(\frac{S_t}{S_{\text{Air}}}\right) + K_{\text{L}}\right]
\]

3 Results

3.1 Validation

Unfortunately, there is not proper validation data that one can consider aerodynamics, structure and aeroacoustics together. Therefore, validation of three parts of WINFAS was performed separately.
The comparison of low speed shaft torque between the NREL Phase-VI experiments [17-19] is shown in Figure 3. The results calculated by the NVCM of WINFAS are in good agreement with experiments.

In order to validate structural part, flapwise tip displacement of WINFAS was compared with that of other numerical tools. RB 70 rotor blade [22] that radius is 35.2m and rated power is 1.5MW was used for validation. As seen Figure 4, WINFAS’ results are good consistent with other numerical tools.

By comparison with the noise measurements [23], verification of noise prediction part of WINFAS was performed as seen Figure 5 and 6. Figure 5 indicates good agreement between sound power level (L_{WA}) of experiments and that of simulation. Though by spectrum comparison in Figure 6, differences are observed in some frequency regions, it can be seen good agreement generally. Note that NM-72 is active stall control type and several peaks of measurement spectrum can come from mechanical part such as gearbox.

Figure 3 The low speed shaft torque comparison with NREL Phase VI experiment [17-19]. Shin used vortex lattice method based on free wake without post stall consideration [20]. CMRAD2 is based on Lifting Line Method [21].

Figure 4 The comparison of flapwise blade tip deformation of RB 70 [22]. HAWCBladeStab is program of Risø for the aeroelastic stability of blade vibrations. Stab-Blade is program of CRES for the aeroelastic stability of blade vibrations. BLDMODE is program of ECN for the rotor blade eigenmode analysis.

Figure 5 The power and sound power level of NM-72 per wind speed. Specification means the power curve provided by NEG-Micon. Noise measurement was performed by KRISS detailed in ref. [23].

Figure 6 The one-third octave band spectrum in 6m/s. Noise measurement was performed by KRISS detailed in [23].

Figure 7 The aerodynamic power considering elastic deformation. The normalized differences between power of case without deformation and that of case with deformation are about 5% over wind speed of 10.5 m/s.

3.2 Noise calculation

The rotor of 3MW wind turbine system which has 3 blades whose radius is 45.8m and rated wind speed is
12.5 m/s with 15.7 rated rpm was used for the aerodynamic noise calculation. Airfoils the blade consists of are DU se-
ries whose thickness is from 40% to 20% and NACA64-618 in the tip region. The blade was divided up into 15 vortex lattices along the radial directions and two vortex lattices along the chordwise directions for simulation. A azimuthal step size is 6°.

The Aerodynamic power difference which is normalized by the power with consideration FSI is about 5% over 10.5 m/s. Blade deformation makes effective angle of attack and onset velocity change. Especially blade pitching down due to blade flexibility would be the biggest effect on angle of attack decrease. As a result, its decrease reduces aerody-
namic load as seen Figure 7.

Figure 8 The sound pressure level of various wind speed cases in uniform flow. In the rated wind speed, 11.5 m/s and 10.5 m/s, the SPL difference between the case of considering deflection and that of not considering deflection is about 2–1.5 dB.

Figure 8 describes the difference between SPL of flexible blade and that of rigid blade. In contrast to the tendency of aerodynamic power due to blade flexibility, there is no sig-
nificant noise level difference which is caused by blade de-
formation as wind speed is over 14.5 m/s. The rotor rota-
tional speed of most modern large wind turbines reaches rated RPM as wind speed is below just 1–2 m/s of rated speed. Moreover, pitch control keeps constant electric pow-
er level operates when wind speed is over rated wind speed.

Therefore, because wind turbine blade operates in the condition of low angle of attack through the whole blade as wind speed is over 12.5 m/s, angle of attack difference due to pitching down does not significantly affect on aerody-
namic noise change. Moreover, because the velocity due to rotation that is a component of total onset velocity on each section is constant over rated wind speed, TBL-TE noise does not change seriously.

Figure 9 and 10 show the frequency spectrum of TBLTE noise considering FSI in 10.5 m/s. TBLTE-P is turbulent boundary layer pressure side noise. TBLTE-S indicates turbulent boundary layer suction side noise. TBLTE-α means separated flow noise.

4 Conclusions

This paper describes the effects of blade flexibility on aerodynamic noise. For considering Fluid-Structure Interac-
tion, the NVCM was used for aerodynamic analysis and blade structural dynamics was modeled in the Nonlinear Composite Beam Theory. Finally, the flow data such as

Figure 9 The frequency spectrum of TBLTE noise in wind speed of 10.5 m/s. TBLTE-P is turbulent boundary layer pressure side noise, TBLTE-S indicates turbulent boundary layer suction side noise. TBLTE-α means separated flow noise.

Figure 10 The frequency spectrum of TBLTE noise in wind speed of 18.5 m/s.
effective angle of attack, blade deformed geometry and onset velocity, calculated by the numerical method with or without FSI, were used for prediction of aerodynamic noise, TBLTE noise. In 8–12 m/s of uniform flow, sound pressure level of considering blade deflection case was about 1.5–2.5 dB low compared to rigid blade. When wind speed is over 12 m/s, rated wind speed, noise changes caused by blade flexibility were not significant because wind turbine blade operates low angles of attack range on mid and tip region of the blade due to pitch control that modern large wind turbines have. In other words, the reason is that angle of attack changes in the condition of low angle of attack, around 0°, produce smaller variations than that in the condition of high angle of attack, around 5°.

Figure 11 The footprint of overall sound pressure level with deflection in wind speed of 12.5 m/s.

Figure 12 The footprint of overall sound pressure level without deflection in wind speed of 12.5 m/s.

In the aspect of noise assessment, the amount of time it takes to predict the noise produced by modern large wind turbine considering FSI is too long. Therefore, for the wind speeds in which blade flexibility affects on aerodynamic noise, it is proper approach to correct over predicted sound pressure level that rigid blade generates.

This research was limited to steady uniform flow condition and pitch controlled and variable speed wind turbine. What remains to be determined by future research is studies about the blade flexibility effect on noise generated by types of wind turbine system, for example individual pitch control and stall control, and unsteady wind condition, the time variance of wind velocity.

This work was supported by the Human Resources Development and the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20094020100060 & No. 2009T100100231).

1 Johansson L. Summary of IEA Topical Expert meeting on Noise Immission, 2000
11 Prandtl L, Tietjens O G. Applied hydro- and aeromechanics. DOVER, New York, USA, 1934
12 van Garrel A. Development of wind turbine aerodynamics simulation module. ECN-C--03-079, 2003
22 Lindenburg C. Structural Pitch for a Pitch-to-Vane Controlled Wind Turbine Rotor. ECN-C-03-087, 2004