Aerodynamics H.O.#2 2017-2 Seoul National University Prof. Soogab Lee

Overview

1. Introduction

- Brief History
- Flow statics
- Coefficients of lift, drag, pitching moment
- Dimensional Analysis (Buckingham's ∏theorem)
- Similarity Mach number, Reynolds number
- Vorticity
- Circulation
- Stream function
- Velocity potential
- Pressure coefficient
- Center of pressure
- Cp vs. x/c curve

2. Basic Equations

- Continuity equation
- Momentum equations
- Energy equation
- Material (Substantial) derivative
- Hydrostatic equation
- Bernoulli's equation
- 3. Inviscid, incompressible flow
 - Laplace's equation (+ irrotational)
 - Potential flow: uniform, source, doublet, vortex (2D &3D)
 - Combination of potentials
 - uniform+doublet --> nonlifting cylinder or sphere uniform+doublet+vortex in 2-D--> lifting cylinder
 - Kutta-Joukowski theorem
 - Source Panel method
- 4. Incompressible (& inviscid) flow over airfoils

-Airfoil nomenclature: chord, camber,thickness, leading-edge, trailing -edge , etc. - Cl vs. α curve : lift slope, stall (separation), zero-lift AOA, AC

- Vortex filament, vortex sheet
- Kutta condition
- Kelvin's circulation theorem: starting vortex, stopping vortex
- Thin airfoil theory : symmetrical airfoil, cambered airfoil
- Vortex Panel Method
- Real case: deep stall, light stall, leading & trailing edge flap, multi-element airfoils, flaperon, drooped leading-edge, etc.
- 5. Incompressible (& inviscid) flow over wings
 - finite & infinite wing
 - horseshoe vortex system: bound vortex, trailing vortices, downwash
 - Induced drag, induced angle of attack, effective angle of attack
 - D'Alembert's paradox
 - Drag in incompressible flow = induced drag + profile drag
 - Vortex filament, Biot-Savart law, Helmholtz's theorem
 - Prandtl's lifting line theory
 - Elliptic lift distribution: constant downwash, minimum induced drag,
 - General lift distribution: Oswald's (span efficiency) factor
 - Effect of aspect ratio
 - Vortex lattice method
- 6. Other topics
 - Methods of image
 - Boundary layer & Separation
 - Equations and their assumptions in fluid mechanics
 - Navier-Stokes equation
 - Euler equation
 - Full potential equation
 - Transonic Small Disturbance equation
 - Laplace equation