
Course Schedule for 'Aerodynamics' (Class 2017)

- Mon. & Weds. (11:00 ~ 12:15)
- Place: Bldg. 301 Rm. 1303
- Professor : Soogab Lee (solee@snu.ac.kr)
- TA: Seoryong Park (tjfyd11@snu.ac.kr)
- Homepage : <u>aancl.snu.ac.kr</u>
- Text:
 - Class Note (download from class homepage)
 - -'Fundamentals of Aerodynamics' by J.D. Anderson"

* Book

Class Note

Course Guideline (Y2017)

Performance Evaluation

- Attendance & Participation : 10 % (extra)
- Homework & Projects: 40%
- Mid-term Quiz : 20% (if necessary)
- Final Exam.(Possibly a take-home): 40 %
- Random evaluation: 10% (ex: good answer in the class)
- Q&A: English/Korean

Grades

- Late penalty on projects & exams
- if miss projects & exams => "F"

***** What to lecture...

- Concepts, concepts, and concepts.....!!
- Mathematical Modeling
- Computational Programming
- Problem solving based on Physical Assessment

Syllabus

W	Contents	W	Contents
1	Introduction to Aerodynamics Aerodynamic forces and moments	9	Kutta-Joukowski theorem
2	Aerodynamic forces and moments Center of pressure	10	Kutta condition Kelvin's circulation theorem
3	Similarity Dimensional analysis	11	Thin airfoil theory and Vortex panel method
4	Governing equations of aerodynamics	12	Modern high-lift airfoil
5	Substantial derivative	13	Downwash and Induced drag
6	Circulation, stream function, and velocity potential	14	Plandtl's lifting line theory
7	Bernoulli's equation, Conditions for irrotationality and incompressibility	15	Delta wing aerodynamics
8	Fundamentals of 2-D potential flows and source panel method	16	Final Exam

***** Introduction

- Aerodynamics?
- Pictures about history of flight
- Application of Aerodynamics
 - Rocket/Airplane/Rotorcraft/Missile/Birds
 - HST/Train/Automobile/Hovercraft/Ship/Subways
 - Gas turbines/Compressor/Pump/Wind turbine/Propeller/ Fan (Rotating Machineries)
 - Pipe/Duct/Channel/Tunnel/HVAC/Combustor
 - Whatever it moves...

* 'Aerodynamics'

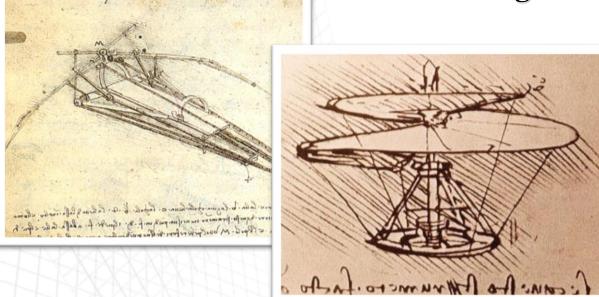
The term "Aerodynamics" is generally used for problems arising from flight and other topics involving the flow of air

- Ludwig Prandtl, 1949

Aerodynamics: The dynamics of gases, especially atmospheric interactions with moving objects

- The American Heritage Dictionary of the Language, 1969

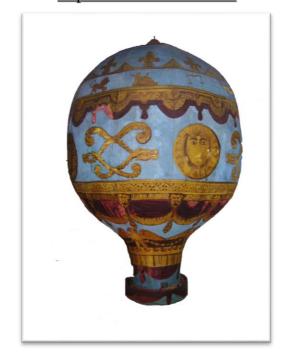
< Icarus and Daedalus> - 'Flight is just Myth'



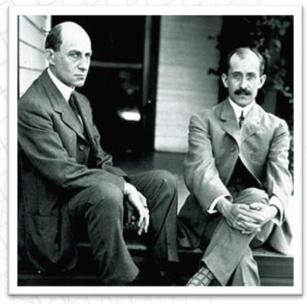
'Icarus Paradox'

< Leonardo da vinci 's Sketch (1452-1518)>

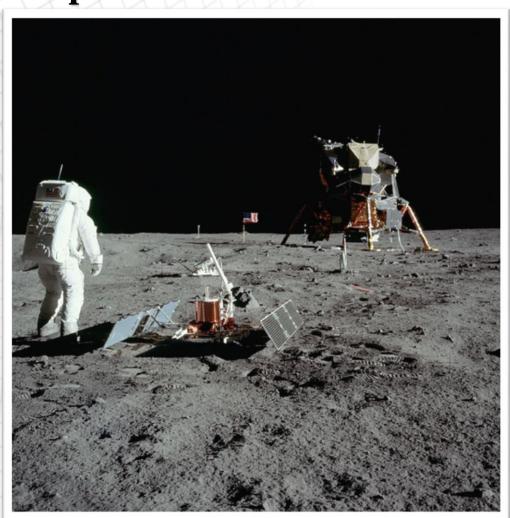
'Flight is creative concept'



< Montgolfier Brothers' Balloons > - "First Human Flight"


Joseph and Jacques Montgolfier, French paper-mill owners (1783)

Paper-lined silk balloon


< Wilbur and Orville Wright>

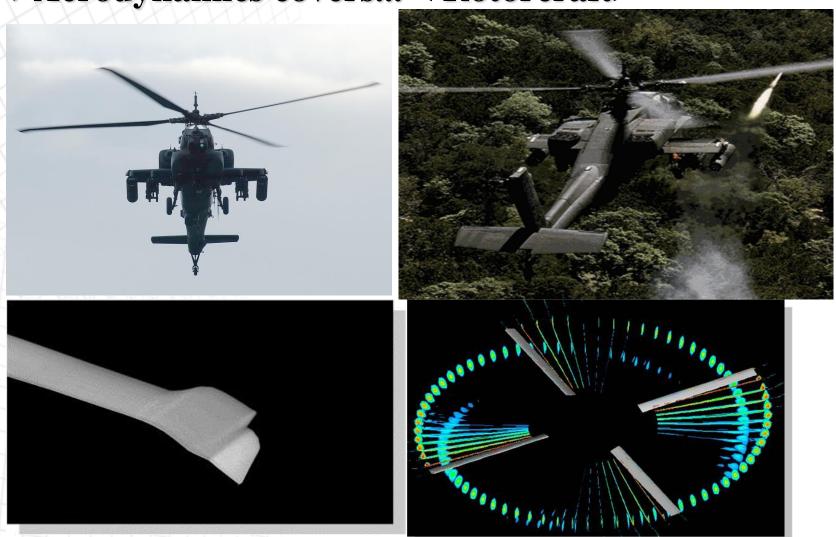
"Wilbur Wright pilots the 1902 glider over the Kill-Devil Hills, Oct 10, 1902."

< Apollo 11>

"That's one small step for (a) man, one giant leap for mankind."

- Niel Armstrong (1969)

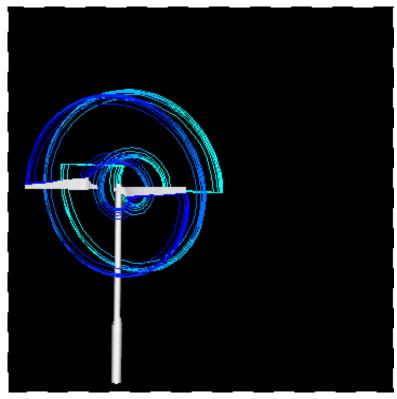
Aerodynamics covers...



❖ Aerodynamics covers... < Rotorcraft>

Aerodynamics covers... < Rotating machinery>

❖ Aerodynamics covers... < Rotating machinery>


- Totally new conceptual design for Automotive FAN (Lowest noise in the world, higher performance)
- Currently used for Hyundai, Mercedes Benz, Ford etc.

<Wave Fan, AANCL 2003 >

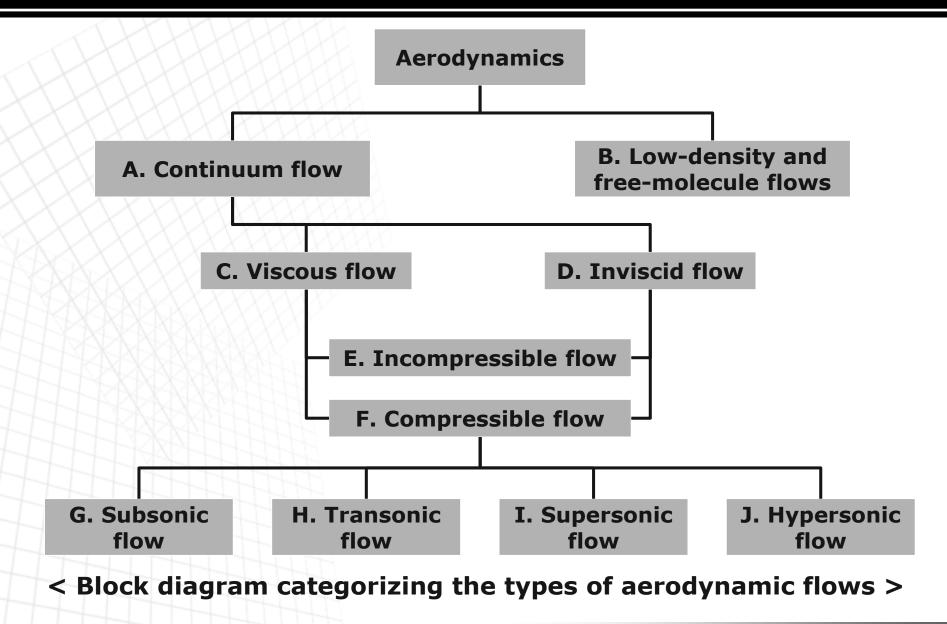
Aerodynamics covers... < Wind Turbine Rotors>

<NREL Test Model>

<FVE Wake Analysis, 2005 AANCL>

< 1.2 Some Terminologies >

- $* "solid" au imes \delta$
- "fluid" liquid or gas
 - Newtonian fluid : $\tau \propto \partial u/\partial y$
 - Non-Newtonian fluid: $\tau \not\propto \partial u/\partial y$


Molecular level

- Solid almost "glued" by powerful intermolecular forces
- Liquid fluidity
- Gas weak intermolecular force

- < 1.2 Some Terminologies >
- Classification of fluid dynamics
 (study of the dynamics of both liquid and gases)
 - Hydrodynamics liquid
 - Gas dynamics gas (Air, N₂, He, ...)
 - Aerodynamics air
 - External aerodynamics the prediction of forces and moments of, and hear transfer to, bodies moving through a fluid
 - Internal aerodynamics Determination of flows moving internally through ducts

< 1.2 Some Terminologies >

- **Continuum flow**
 - Usual flow ($Kn \ll 1$)
 - Rarefied gas dynamics (Kn >> 1)
 - Kn: Knudsen number = $\frac{\lambda}{L} \sim mean\ free\ length \sim charcteristic\ length$
 - Newtonian fluid : $au \propto \partial u/\partial y$
 - Non-Newtonian fluid : $\tau \propto \partial u/\partial y$

- 22 -

Aerodynamics 2017 fall